
НАЙС.ОС | Общество с ограниченной ответственностью «НАЙС СОФТ ГРУПП»
Свидетельство о государственной регистрации программы для ЭВМ №2025612870 от 05 февраля 2025 г.

https://niceos.ru/docs/hardening-flagi-v-najsos-kak-my-zasisaem-vas-ot-eksplojtov

Hardening-флаги в НАЙС.ОС

Hardening-флаги в НАЙС.ОС

В НАЙС.ОС по умолчанию включены ключевые hardening-флаги, которые
значительно повышают устойчивость системы к эксплуатации
уязвимостей. Эти флаги активируют защитные механизмы на уровне
бинарных файлов: PIE (перемещаемые исполняемые файлы), RELRO
(защита таблиц GOT), SSP (Stack Smashing Protection), ASLR
(рандомизация адресного пространства), FORTIFY_SOURCE
(дополнительные проверки функций libc). Вместе они делают
практически невозможным эксплуатацию типовых багов вроде
переполнения буфера, возврата в libc или ROP-атак без сложных обходов.
Эти защиты активированы как для системных сервисов, так и для
пользовательских приложений, включая sudo, sshd, rpm, gpg.
Пользователи получают безопасную по умолчанию систему, а
разработчики — возможность собирать устойчивые к атакам
приложения без лишних усилий.

Hardening-флаги в НАЙС.ОС

Техническая документация: политика сборки, механизм защиты, проверка
соответствия, применение в проектах
Версия документа: 1.0
Статус: действующий
Аннотация
Документ устанавливает технические требования к применению компиляторных и
линковочных механизмов усиления безопасности (hardening) в НАЙС.ОС и в
пользовательских проектах. Рассматриваются: модель угроз, перечень механизмов,
типовые флаги сборки, методы верификации (checksec, hardening-check, readelf),
интеграция в RPM-сборку и CI/CD, ограничения и порядок исключений.

НАЙС.ОС | Общество с ограниченной ответственностью «НАЙС СОФТ ГРУПП»
Свидетельство о государственной регистрации программы для ЭВМ №2025612870 от 05 февраля 2025 г.

https://niceos.ru/docs/hardening-flagi-v-najsos-kak-my-zasisaem-vas-ot-eksplojtov

1. Область применения

Требования настоящего документа распространяются на:

системные пакеты и сервисы НАЙС.ОС, собираемые в RPM-окружении;
прикладные бинарные файлы и библиотеки, распространяемые в составе
решений на базе НАЙС.ОС;
пользовательские проекты на C/C++ (а также смешанные проекты), собираемые
на НАЙС.ОС.

Документ не заменяет регуляторные требования (сертификация, применение СКЗИ,
контроль целостности и т.п.). Hardening рассматривается как инженерная мера
снижения эксплуатационности уязвимостей класса memory corruption.

2. Термины, определения и сокращения

Термин Определение

Hardening
Совокупность мер компиляции/линковки/настроек
исполнения, повышающих устойчивость ПО к эксплуатации
уязвимостей.

PIE
Position Independent Executable. Исполняемый файл,
допускающий загрузку по произвольному адресу (условие
эффективного ASLR).

ASLR Address Space Layout Randomization. Рандомизация
размещения сегментов процесса (stack/heap/libs/text и др.).

RELRO Relocation Read-Only. Перевод таблиц релокаций/GOT в
режим «только чтение» после разрешения символов.

SSP
Stack Smashing Protector. Защита стека с применением
«канарейки» (stack canary) и аварийным завершением при
повреждении.

FORTIFY_SOURCE
Усиленные проверки некоторых функций libc
(копирование/строки/память) при наличии оптимизаций и
информации о размерах буферов.

NX
Non-eXecutable memory. Запрет исполнения кода из страниц
данных (включая стек), при поддержке аппаратного NX-бита
и настроек линкера.

НАЙС.ОС | Общество с ограниченной ответственностью «НАЙС СОФТ ГРУПП»
Свидетельство о государственной регистрации программы для ЭВМ №2025612870 от 05 февраля 2025 г.

https://niceos.ru/docs/hardening-flagi-v-najsos-kak-my-zasisaem-vas-ot-eksplojtov

Термин Определение

CET
Control-flow Enforcement Technology. Аппаратные
механизмы защиты управления потоком (в зависимости от
платформы/ядра/компилятора).

3. Модель угроз и цель hardening

Hardening направлен на снижение успешности эксплуатации уязвимостей, связанных
с повреждением памяти и управлением потоком исполнения, включая:

переполнение буфера (stack/heap), выход за границы массива (OOB);
use-after-free (UAF), двойное освобождение, повреждение метаданных
аллокатора;
подмена адресов переходов/вызовов функций (return-to-libc, ROP/JOP);
перезапись таблиц динамической линковки (GOT/PLT) и релокаций;
выполнение внедрённого кода из данных (shellcode) при ошибках в проверках
границ.

Примечание
Hardening не устраняет причину уязвимости и не заменяет безопасную разработку,
статический/динамический анализ, обновления и контроль цепочки поставки. Цель
hardening — увеличить стоимость атаки и перевести часть классов эксплуатации в
отказ по безопасности (fail closed) либо в неэксплуатируемое состояние.

4. Механизмы hardening: состав и назначение

В НАЙС.ОС hardening рассматривается на трёх уровнях: компиляция, линковка,
исполнение. Механизмы должны применяться согласованно.

Механизм Назначение / эффект Типовая реализация
(флаги/настройки)

PIE

Обеспечивает возможность
загрузки бинарного кода по
произвольному адресу, повышая
эффективность ASLR.

-fPIE (compile) + -pie (link)

НАЙС.ОС | Общество с ограниченной ответственностью «НАЙС СОФТ ГРУПП»
Свидетельство о государственной регистрации программы для ЭВМ №2025612870 от 05 февраля 2025 г.

https://niceos.ru/docs/hardening-flagi-v-najsos-kak-my-zasisaem-vas-ot-eksplojtov

Механизм Назначение / эффект Типовая реализация
(флаги/настройки)

ASLR

Рандомизирует адресное
пространство процесса; снижает
предсказуемость адресов
gadget/функций/структур.

Параметры ядра;
эффективность
повышается при PIE

RELRO

Усложняет подмену адресов
динамических символов
(GOT/relocations). В режиме «Full»
фиксирует разрешение символов на
старте процесса.

-Wl,-z,relro + -Wl,-z,now

SSP
Обнаруживает повреждение стека и
завершает процесс до перехода по
перезаписанному адресу возврата.

-fstack-protector-strong (или
эквивалентный профиль)

FORTIFY
Добавляет проверки для части API
libc при наличии оптимизаций и
информации о размерах буферов.

-D_FORTIFY_SOURCE=2 (и
выше) + оптимизация (-O)

NX

Запрещает исполнение кода из
стека и части областей данных при
поддержке аппаратного NX и
корректных атрибутов ELF.

Линковка: -Wl,-z,noexecstack;
контроль ELF сегмента
GNU_STACK

No RPATH Снижает риски подмены библиотек
через небезопасные пути загрузки.

Контроль: отсутствие
RPATH/RUNPATH в ELF

Format
security

Повышает вероятность выявления
ошибок форматных строк на этапе
компиляции.

-Wformat -Werror=format-
security (политика проекта)

Внимание
Hardening является «сквозной» настройкой. Частичное применение (например, SSP
без PIE/RELRO) снижает суммарный эффект и усложняет контроль соответствия.
Рекомендуется применять профильным набором флагов, централизованно, через
макросы сборки и CI-проверки.

5. Политика НАЙС.ОС: применение по умолчанию

В НАЙС.ОС hardening-флаги рассматриваются как базовая характеристика поставки.
Системные пакеты должны собираться с включёнными защитными механизмами по

НАЙС.ОС | Общество с ограниченной ответственностью «НАЙС СОФТ ГРУПП»
Свидетельство о государственной регистрации программы для ЭВМ №2025612870 от 05 февраля 2025 г.

https://niceos.ru/docs/hardening-flagi-v-najsos-kak-my-zasisaem-vas-ot-eksplojtov

умолчанию. Применение обеспечивается:

глобальными RPM-макросами для компилятора и линковщика;
единым набором %optflags и глобальных LDFLAGS;
контролем соответствия в QA/CI для критических пакетов и образов.

Администратор может проверить эффективные флаги окружения сборки:

Команды проверки макросов RPM

rpm --eval '%{optflags}'
rpm --eval '%{__global_cflags}'
rpm --eval '%{__global_cxxflags}'
rpm --eval '%{__global_ldflags}'

Примечание
Для пакетов с нестандартной системой сборки допускается явная прокладка флагов
через переменные окружения (CFLAGS/CXXFLAGS/LDFLAGS) при условии сохранения
профиля hardening и прохождения проверки.

6. Проверка включённых механизмов

Проверка должна выполняться на уровне готовых ELF-объектов (исполняемые файлы
и разделяемые библиотеки), а также на уровне параметров системы (для ASLR и
смежных механизмов).

6.1 Автоматическая проверка (checksec)

Утилита checksec предоставляет агрегированное состояние защит ELF (RELRO, canary,
NX, PIE, Fortify и др.).

Пример: проверка бинарного файла

checksec --file /usr/bin/sudo

Типовой набор атрибутов, который должен присутствовать у критических системных
бинарников:

RELRO: Full
Canary: Yes

НАЙС.ОС | Общество с ограниченной ответственностью «НАЙС СОФТ ГРУПП»
Свидетельство о государственной регистрации программы для ЭВМ №2025612870 от 05 февраля 2025 г.

https://niceos.ru/docs/hardening-flagi-v-najsos-kak-my-zasisaem-vas-ot-eksplojtov

NX: Enabled
PIE: Enabled
FORTIFY: Enabled (для динамических сборок при поддержке libc)

Примечание
Реальный формат вывода зависит от конкретной реализации checksec. В ряде
реализаций также отображаются поля RPATH/RUNPATH, наличие CFI и количество
«fortified» вызовов.

6.2 Автоматическая проверка (hardening-check)

Утилита hardening-check применяется для быстрого контроля соответствия набору
требований hardening (характерна для практик дистрибутивной сборки и аудит-
процедур).

Пример: проверка бинарного файла

hardening-check /usr/bin/ssh
hardening-check /usr/sbin/sshd

6.3 Ручная верификация ELF (readelf)

Проверка PIE (тип ELF):

PIE: ELF type

readelf -h /usr/bin/ssh | egrep 'Type:|Entry point'

Для PIE характерен тип ET_DYN (в отличие от ET_EXEC у не-PIE исполняемых файлов).

Проверка RELRO (наличие сегмента GNU_RELRO):

RELRO: GNU_RELRO

readelf -l /usr/bin/ssh | grep -F 'GNU_RELRO' || true

Проверка «Full RELRO» (принудительное раннее связывание символов):

НАЙС.ОС | Общество с ограниченной ответственностью «НАЙС СОФТ ГРУПП»
Свидетельство о государственной регистрации программы для ЭВМ №2025612870 от 05 февраля 2025 г.

https://niceos.ru/docs/hardening-flagi-v-najsos-kak-my-zasisaem-vas-ot-eksplojtov

Full RELRO: BIND_NOW

readelf -d /usr/bin/ssh | egrep 'BIND_NOW|FLAGS' || true

Проверка NX стека (GNU_STACK должен быть без флага E):

NX: GNU_STACK

readelf -W -l /usr/bin/ssh | grep -F 'GNU_STACK' || true

6.4 Проверка ASLR (параметры ядра)

Для систем общего назначения обычно используется режим полной рандомизации
адресного пространства. Проверка выполняется через sysctl-интерфейс ядра:

ASLR: randomize_va_space

cat /proc/sys/kernel/randomize_va_space

Примечание
Настройка ASLR зависит от профиля системы (включая контейнерные окружения) и
политик эксплуатации. Значение параметра следует фиксировать в конфигурации
профиля и контролировать средствами аудита.

7. Подключение hardening в собственных проектах

Рекомендуется централизованно задавать флаги через переменные окружения и/или
настройки системы сборки. Ниже приведены минимально достаточные примеры.
Конкретный профиль должен соответствовать политике сборки НАЙС.ОС.

7.1 Makefile
Makefile: CFLAGS/LDFLAGS

CFLAGS += -O2 -pipe -fstack-protector-strong -D_FORTIFY_SOURCE=2 -fPIE
LDFLAGS += -Wl,-z,relro -Wl,-z,now -Wl,-z,noexecstack -pie

НАЙС.ОС | Общество с ограниченной ответственностью «НАЙС СОФТ ГРУПП»
Свидетельство о государственной регистрации программы для ЭВМ №2025612870 от 05 февраля 2025 г.

https://niceos.ru/docs/hardening-flagi-v-najsos-kak-my-zasisaem-vas-ot-eksplojtov

all: app
app: main.o
 $(CC) $(CFLAGS) -o $@ $^ $(LDFLAGS)

7.2 CMake
CMakeLists.txt: добавление флагов

cmake_minimum_required(VERSION 3.16)
project(app C)

add_executable(app main.c)

target_compile_options(app PRIVATE
 -O2 -pipe
 -fstack-protector-strong
 -D_FORTIFY_SOURCE=2
 -fPIE
)

target_link_options(app PRIVATE
 -Wl,-z,relro
 -Wl,-z,now
 -Wl,-z,noexecstack
 -pie
)

7.3 Meson
meson.build: project arguments

project('app', 'c', default_options : ['buildtype=release'])

add_project_arguments(
 '-O2', '-pipe',
 '-fstack-protector-strong',
 '-D_FORTIFY_SOURCE=2',
 '-fPIE',
 language: 'c'
)

add_project_link_arguments(
 '-Wl,-z,relro',
 '-Wl,-z,now',
 '-Wl,-z,noexecstack',

НАЙС.ОС | Общество с ограниченной ответственностью «НАЙС СОФТ ГРУПП»
Свидетельство о государственной регистрации программы для ЭВМ №2025612870 от 05 февраля 2025 г.

https://niceos.ru/docs/hardening-flagi-v-najsos-kak-my-zasisaem-vas-ot-eksplojtov

 '-pie',
 language: 'c'
)

executable('app', 'main.c')

7.4 Autotools
configure: переменные окружения

export CFLAGS="-O2 -pipe -fstack-protector-strong -D_FORTIFY_SOURCE=2 -fPIE"
export LDFLAGS="-Wl,-z,relro -Wl,-z,now -Wl,-z,noexecstack -pie"

./configure
make -j"$(nproc)"
make install

Внимание
Для разделяемых библиотек следует использовать -fPIC (а не -fPIE). Для статических
сборок применимость отдельных механизмов (FORTIFY, RELRO, checksec-атрибуты)
должна проверяться отдельно.

8. Ограничения и типовые конфликтные случаи

8.1 Производительность и старт процесса
RELRO + -z now может увеличивать время старта процессов за счёт раннего
разрешения символов.
PIE добавляет косвенные издержки на адресацию; эффект зависит от
архитектуры и профиля нагрузки.
FORTIFY добавляет проверки, которые проявляются на горячих путях только при
фактическом использовании защищаемых API.

8.2 Совместимость и особенности сборок
Некоторые низкоуровневые компоненты (загрузчики, рантаймы, JIT, особые
статические сборки) могут требовать специализированных профилей.
Плагины, загружаемые сторонним рантаймом, требуют согласования флагов
(PIE/PIC, visibility, LTO) на уровне всего графа зависимостей.

НАЙС.ОС | Общество с ограниченной ответственностью «НАЙС СОФТ ГРУПП»
Свидетельство о государственной регистрации программы для ЭВМ №2025612870 от 05 февраля 2025 г.

https://niceos.ru/docs/hardening-flagi-v-najsos-kak-my-zasisaem-vas-ot-eksplojtov

FORTIFY требует оптимизаций компилятора (как минимум -O1) и поддержки
соответствующей libc.

8.3 Отладка

PIE/ASLR усложняют анализ адресов при отладке. Для воспроизводимости
допускается временное отключение рандомизации в отладочных сессиях (в рамках
регламента разработки), без изменения production-профиля.

GDB: управление рандомизацией

пример для отладочной сессии
gdb -q ./app
(gdb) set disable-randomization on
(gdb) run

9. Контроль соответствия: CI/CD и аудит

Контроль соответствия должен быть автоматизирован и выполняться на артефактах
сборки. Минимальный контроль включает:

проверку критических бинарников на PIE/RELRO/NX/SSP/FORTIFY;
контроль отсутствия RPATH/RUNPATH;
проверку, что профиль сборки не деградировал при изменениях
спеков/toolchain.

9.1 Пример: GitHub Actions
.github/workflows/hardening.yml

name: hardening-check

on:
 push:
 pull_request:

jobs:
 hardening:
 runs-on: ubuntu-latest
 steps:
 - uses: actions/checkout@v4

НАЙС.ОС | Общество с ограниченной ответственностью «НАЙС СОФТ ГРУПП»
Свидетельство о государственной регистрации программы для ЭВМ №2025612870 от 05 февраля 2025 г.

https://niceos.ru/docs/hardening-flagi-v-najsos-kak-my-zasisaem-vas-ot-eksplojtov

 - name: Build
 run: |
 make -j"$(nproc)"

 - name: Check hardening (example)
 run: |
 checksec --file ./app || true
 hardening-check ./app || true

9.2 Пример: пакетная проверка каталога
Сканирование каталога с бинарниками

set -euo pipefail

BIN_DIR="${1:-./bin}"

find "$BIN_DIR" -type f -maxdepth 1 -print0 | while IFS= read -r -d '' f; do
 if file "$f" | grep -q 'ELF'; then
 echo "==> $f"
 checksec --file "$f" || true
 hardening-check "$f" || true
 fi
done

Примечание
В production-контуре рекомендуется сохранять отчёты проверки (артефакты CI) и
обеспечивать трассируемость: версия исходников � параметры сборки � результаты
hardening-проверок � опубликованный пакет/образ.

10. Порядок исключений и документирование
отклонений

Отклонение от профиля hardening допускается только при наличии технического
обоснования и при соблюдении процедуры:

фиксируется причина (несовместимость, требование real-time, ограничение1.
рантайма);
описывается область действия (конкретный бинарник/библиотека/модуль);2.
определяются компенсирующие меры (изоляция, sandbox, ограничение3.
привилегий, конфигурация сервиса);

НАЙС.ОС | Общество с ограниченной ответственностью «НАЙС СОФТ ГРУПП»
Свидетельство о государственной регистрации программы для ЭВМ №2025612870 от 05 февраля 2025 г.

https://niceos.ru/docs/hardening-flagi-v-najsos-kak-my-zasisaem-vas-ot-eksplojtov

в CI добавляется отдельный контроль, подтверждающий, что исключение не4.
расширилось на другие артефакты.

Внимание
Неформализованные исключения (например, «так проще собрать») не допускаются.
Любое отключение SSP/PIE/RELRO/NX для компонентов, обрабатывающих
недоверенные данные, должно считаться повышением риска и требовать отдельного
согласования.

11. План развития

Политика hardening рассматривается как непрерывно развиваемая. При наличии
поддержки со стороны toolchain и ядра могут расширяться следующие направления:

аппаратные механизмы защиты управления потоком (включая CET — при
наличии аппаратной и программной поддержки);
усиление профилей компиляции для части C/C++ библиотек (включая
дополнительные проверки стандартной библиотеки);
расширение набора автоматических проверок (включая анализ
RPATH/RUNPATH, запрет небезопасных флагов линковки);
интеграция результатов hardening-сканирования в отчётность поставки
(SBOM/аттестационные артефакты), при необходимости.

12. Приложения

12.1 Контрольный список (минимальный профиль)

Параметр Критерий соответствия

PIE Исполняемые файлы: ET_DYN (за исключением
документированных исключений)

RELRO Наличие GNU_RELRO; для критических
компонентов — «Full» (с BIND_NOW)

NX GNU_STACK без флага исполнения; отсутствие
исполняемого стека

SSP Наличие символов/паттернов stack canary
(проверка checksec/hardening-check)

НАЙС.ОС | Общество с ограниченной ответственностью «НАЙС СОФТ ГРУПП»
Свидетельство о государственной регистрации программы для ЭВМ №2025612870 от 05 февраля 2025 г.

https://niceos.ru/docs/hardening-flagi-v-najsos-kak-my-zasisaem-vas-ot-eksplojtov

Параметр Критерий соответствия

FORTIFY
Включено при поддержке libc и наличии
оптимизаций; контроль выборочно по
критическим пакетам

RPATH/RUNPATH Отсутствует, если не требуется по архитектуре
решения

12.2 Приложение: шаблон отчёта проверки
Шаблон отчёта (пример)

Объект проверки:
Пакет/компонент:
Версия:
Сборка (git hash / release):
Дата:
#
Команды:
checksec --file <path>
hardening-check <path>
readelf -h/-l/-d <path>
#
Результаты:
PIE:
RELRO:
NX:
SSP:
FORTIFY:
RPATH/RUNPATH:
#
Заключение:
Соответствует / Не соответствует
Отклонения (если есть) + обоснование

12.3 Ссылки (для сопровождения документа)
ld(1) — описание линковочных опций семейства -z (RELRO, NOW, NOEXECSTACK и
др.).
checksec — инструмент проверки защит ELF (RELRO, NX, PIE, Fortify и др.).
hardening-check — утилита быстрого контроля hardening-профиля.

НАЙС.ОС | Общество с ограниченной ответственностью «НАЙС СОФТ ГРУПП»
Свидетельство о государственной регистрации программы для ЭВМ №2025612870 от 05 февраля 2025 г.

https://niceos.ru/docs/hardening-flagi-v-najsos-kak-my-zasisaem-vas-ot-eksplojtov

_FORTIFY_SOURCE — механизм усиленных проверок libc.

Заключение

Hardening-флаги являются обязательным инженерным уровнем защиты для
системного и прикладного ПО в НАЙС.ОС. Корректная реализация включает: единый
профиль сборки, верификацию артефактов, автоматический контроль в CI,
формализованный порядок исключений. Такой подход снижает эксплуатационность
типовых уязвимостей класса memory corruption без изменения функциональности
программного кода.

Источники
ld(1) man page: https://man7.org/linux/man-pages/man1/ld.1.html
Пример вывода checksec (свойства RELRO/NX/PIE/Fortify):
https://lib.rs/crates/checksec
Описание практик Linux hardening (PIE/ASLR и др.):
https://book.hashbang.sh/docs/security/linux_hardening/
Документация hardening-check (Debian): (поиск/описание пакета)
https://packages.debian.org/
Документация glibc по FORTIFY_SOURCE: (справочные материалы glibc)
https://sourceware.org/glibc/

